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Abstract: The interrelation between the endocyclic torsion angles 4>, (J = 0-5) in a six-membered ring is given by a truncated 
Fourier series, <j>j = $ 2 cos (P2 + 4x/'/6) + $ 3 cos (TJ). It is deduced from a set of 8451 experimentally determined six-membered 
ring conformations extracted from the Cambridge Structural Database that this equation reproduces the observed endocyclic 
torsions within 1 °, except for sulfur-containing rings where the margins appear to be slightly larger. These findings are corroborated 
by an analysis of six-membered rings generated by molecular mechanics. The ring puckering coordinates *2, P2, and *3 map 
out the conformations attainable by six-membered rings on the surface of a sphere. Thus, a convenient and pictorial description 
of conformational space accessible to six-membered rings is obtained. A comparison is made with the well-known Cremer-Pople 
ring puckering formalism. It is shown that, especially in the case of nonequilateral rings, the present method is more consistent 
with internal angular characteristics (e.g., local flattening) displayed by six-membered rings than the Cremer-Pople formalism. 

Introduction 
The description of nonplanar medium-sized nonaromatic rings 

is a problem with a long history1 in conformational analysis. The 
foundations for its (quantitative) solution in the case of five-
membered rings were laid by Kilpatrick, Pitzer, and Spitzer2 in 
their 1947 discussion of the molecular structure of cyclopentane. 
In this now famous introduction of the concept of pseudorotation, 
they described the nonplanarity of the five-membered ring using 
the following expression for the perpendicular displacement z, of 
the jth carbon from the plane of the unpuckered ring: 

Z1 = A/1 q cos [2(FKPS + 2wj/5)] (1) 

Thus the conformation of the five-membered ring is characterized 
quantitatively by two puckering coordinates: q (=the amplitude 
of puckering) and FKPS (=the phase angle of pseudorotation). 

Although the usefulness of the (q, FKPS) coordinate system was 
generally recognized, application of the model of Kilpatrick et 
al.2 to a general five-membered ring with unequal bond lengths 
and angles appeared not to be straightforward. The difficulties 
resulting from determining the plane of reference were largely 
overcome by Altona et al.3"5 who found that the endocyclic torsion 
angles in a five-membered ring system are interrelated by a 
function very similar to eq 1 and hence yield a quantitative de­
scription of the ring conformation based on internal instead of 
Cartesian coordinates. 

Of course, next to the five-membered ring a considerable 
number of studies6-17 were directed toward the conformation of 
other medium-sized rings. However, it took to 1975 before a 
general and exact definition of ring puckering coordinates was 
reported by Cremer and Pople.'8 By defining a unique mean plane 
for an arbitrary puckered N-membered ring, they were able to 
provide an exact parameterization of the ring puckering relative 
to this plane yielding (N - 3) amplitude and phase coordinates 
which are generalizations of those introduced by Kilpatrick et al. 
(vide supra). These (N- 3) puckering coordinates determine the 
ring conformation in a unique and exact fashion. However, it 
should be realized that this is only so under the implicit as­
sumption19 that all bond lengths as well as (TV- 3) bond angles 
are known. 

For the six-membered ring, the three puckering coordinates 
defined by the Cremer-Pople (CP) algorithm18 

Zj = \ l \ q2 cos [FCP + 4r(/ - l ) / 6 ] + W g ^(- lV" 1 (2) 

In memory of Professor Dr. E. Havinga (1909-1988). 

describe20 the conformational space accessible to the ring in a 
pseudorotational subspace of dimension two (i.e., a puckering 
amplitude, q2, and a phase angle, FCP) and an inversional subspace 
of dimension one (i.e., a puckering amplitude, ^3) . Every ring 
conformation described in terms of this conformational space can 
be viewed"20 mathematically as a linear combination of the basis 
forms, i.e., boat, twist-boat, and chair. This cylindrical system 
of puckering coordinates may be reworked10,18 to a spherical polar 
set (QCP, eCP, FCp) in which Qcv = (q2

2 + ^3
2) ' /2 , the total 

puckering amplitude, and 9C P = arctan (qi/qi)- Thus, all types 
of puckering (for a given total amplitude QCp) can be mapped 
on the surface of a globe. It is the latter representation, originally 
proposed by Hendrickson,7 that provides a practical framework 
for describing the conformation of six-membered rings.10,18'21"23 

Notwithstanding its preciseness and other merits, the CP 
method does also have some drawbacks and limitations.23,24 
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Reconstruction25"28 of the ring (e.g., in atom coordinates) from 
the CP puckering coordinates is not straightforward unless the 
endocyclic valence angles are known. The required reference plane 
makes the method virtually impossible to apply to internal co­
ordinates derived from, e.g., NMR. Moreover, in rings with 
significantly different endocyclic bond lengths and bond angles, 
the CP formalism has been shown23 to lead to conclusions which 
are not consistent with other criteria accepted in stereochemistry. 
It was for these reasons that an alternative ring puckering de­
scription based on angular characteristics of the ring was looked 
for. The present paper discusses a method in which the puckering 
coordinates are derived from endocyclic torsion angles and which 
overcomes, at least partially, the difficulties mentioned above. 

Results 
By virtue of their periodicity, the endocyclic torsion angles (4>Jt 

j = 0,1,.., 5) in a six-membered ring can be described29 exactly 
by a Fourier series: 
0j = * 0 + $i cos (P1 + 27T//6) + *2cos (P2 + 4ir//6) + 

* 3 cos (Tj) (3) 

The parameters $ 0 - *3 , Pi, and P2 in eq 3 can be evaluated by 
Fourier inversion: 

Table I. Mean Values for Parameters *0. *i (of- Eq 3) and Rms 
Deviation between Observed and Calculated (by Eq 10) Endocyclic 
Torsion Angles as Determined from a Selection of Six-Membered 
Rings Taken from the Cambridge Structural Datafile (See Text) 

*o = 1%4>j cos ( J T / / 3 ) 
O;=0 

1 5 
* , cos P1 = -H<t>j cos (ir/ ' /3) 

3;=0 

1 5 
$i sin P1 = --T,4>j sin ( T / / 3 ) 

3;=o 
1 5 

4>2 cos P2 = -IL<f>j cos (2 i r / /3 ) 

1 5 
* 2 sin P 2 = - - £ 0 y sin (2ir/ ' /3) 

3j=o 
1 5 

* 3 = 1T. 4>j cos (ir/) 
Oy=O 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

Of course, for a given ring the values of P1 and P2 as well as the 
sign of * 3 depend on the choice of the origin torsion angle <t>0. For 
a unique description of the six-membered ring conformation by 
means of eq 3, it is therefore necessary to define the endocyclic 
torsion angle numbering scheme. Following Cremer end Pople,18 

ring atom 1 is the atom with the lowest number according to 
IUPAC rules (e.g., heteroatom in heterocycles; see also Boeyens21 

for useful extensions); the rest of the ring atoms are then numbered 
2 to 6 in clockwise order. For the purpose of eq 3, the endocyclic 
torsion about the bond between atom 6 and atom 1 is defined as 
<t>0; the torsion about the bond between atom 1 and atom 2,4>\, 
and so forth. 

For the sake of exploring the characteristics of eq 3, a dataset 
of experimentally determined six-membered ring conformations 
was extracted from the Cambridge Structural Datafile30,31 (CSD). 
A search for cyclohexane, cyclohexene, tetrahydropyran, piper-
idine, thiane, and 4-oxathiane fragments (with no linkages between 
the ring atoms apart from the ring itself) yielded, after removal 
of those entries containing errors and/or with reported esd's(C-C) 
> 0.03 A, a dataset with the Cartesian coordinates of 8451 six-
membered rings. The latter dataset was used to calculate the 
endocyclic torsion angles which in turn led, by means of eq 4-9, 
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(26) Diez, E.; Palma, J.; San-Fabian, J.; Guilleme, J.; Esteban, A. L.; 
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A34, S91. 
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2331. 

no. of ring 
ring type fragments *0° *,' 

rms 
deviation* 

ill rings 

O 
O 
O 
O 
O 
O 

8451 

3515 

1340 

1789 

1673 

124 

10 

-0.00 (0.38) 0.99 (0.73) 0.77 (0.55) 

-0.00 (0.45) 0.95 (0.73) 0.77 (0.58) 

-0.01 (0.27) 1.15 (0.72) 0.87 (0.49) 

-0.02 (0.36) 0.86 (0.68) 0.68 (0.51) 

-0.00 (0.35) 0.98 (0.61) 0.75 (0.48) 

124 -0.04 (0.22) 2.44 (1.16) 1.73 (0.83) 

10 -0.08 (0.08) 2.14 (1.17) 1.52 (0.83) 

"Average value (in degrees); standard deviation between brackets. 
b Average rms deviation between observed and recalculated endocyclic 
torsion angles (in degrees); standard deviation between brackets. 

to the parameters % - *3, P1, and P2 (as defined in eq 3) for each 
ring fragment. Analysis of the data thus obtained shows that the 
magnitude of the parameters $ 0

 a n d *i ' s in general very small: 
Table I lists for $ 0 an overall mean value of -0.00° (standard 
deviation = 0.38°) and for ^1 an overall mean value of 0.99° 
(standard deviation = 0.73°). The table also suggests that the 
mean values of * 0 and S1 hardly depend on the type of six-
membered ring; only in the case of sulfur-containing rings does 
*! appear to be on average slightly larger than in the rest of the 
examined rings. 

The small mean values observed for $ 0 and ^1 suggest that the 
terms in which they occur in eq 3 can be neglected at the cost 
of introducing a marginal systematic error. It is noted in passing 
that such a neglect is analogous to the situation in five-membered 
rings where (small) systematic deviations of the endocyclic torsion 
angles from the well-known pseudorotation equation proposed by 
Altona et al.3"5 were shown32 to stem from disregarding the same 
first two terms in the corresponding Fourier expansion. Thus, 
for the six-membered ring, eq 3 reduces to 

<t>j = * 2 COS (P2 + 4ir//6) + * 3 COS (irj) (10) 

where j = 0, 1, ..., 5. 
The validity of eq 10 may be tested by determining the dif­

ferences between the values of <t>0, <f>u ..., <j>s in the observed 
molecule and the corresponding values recalculated by eq 10 using 
the ring-puckering parameters *2 , P2, and $ 3 (calculated using 
eq 7-9); the root-mean-square deviation between experimental 
and (re-)calculated torsion angles yields a "figure of merit" for 
how well eq 10 describes the conformation of the six-membered 
ring. The last column in Table I lists the mean value of these 
"figures of merit" calculated for the aforementioned dataset of 
experimentally determined ring conformations. The data show 
that eq 10 reproduces the experimental torsion angles quite well: 
the mean of the rms deviations between calculated and observed 
endocyclic torsions is well below 1° except for the sulfur-containing 
rings in which they appear to be slightly larger (but still below 
2°). Notably, the mean value of the rms deviations observed in 
tetrahydropyran rings is comparable to the rms deviations found33 

in five-membered furanose rings upon application of the analogous 
Altona-Sundaralingam formalism.5 Of course, the somewhat 

(32) Rao, S. T.; Westhof, E.; Sundaralingam, M. Acta Cryst. 1981, AiT, 
421. 
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Table II. Mean Values for Parameters *0> *i (cf- Eq 3) and Rms 
Deviation between Observed and Calculated (By Equation 10) 
Endocyclic Torsion Angles as Determined from Sets (FCP = 0°, 10°, 
20°, ..., 350°) of Six-Membered Ring Conformations with Given 
Cremer-Pople Puckering Coordinates (Qc?< 9CP) and Generated by 
Molecular Mechanics (MM2) 

RMS -deviation 
torsion angles 

(degrees) 
1.5 

ring type Qcf 9CP *n' * i ' 

rms 
deviation* 

O 
O 
O 
0 

0.56 
0.56 
0.56 
0.75 

0.56 
0.56 
0.56 
0.75 

0.69 
0.69 
0.69 
0.88 

0.67 
0.67 
0.67 
0.90 

7.2 
51.5 
90.0 
90.0 

7.2 
51.5 
90.0 
90.0 

8.6 
52.0 
90.0 
90.0 

5.2 
52.0 
90.0 
90.0 

0.00 (0.00) 
0.00 (0.10) 
0.00 (0.35) 
0.00 (0.55) 

0.00 (0.03) 
-0.00 (0.27) 
-0.00 (0.46) 
-0.00 (0.72) 

-0.00 (0.02) 
-0.00 (0.22) 

0.00 (0.50) 
0.00 (0.74) 

-0.00 (0.06) 
0.00 (0.38) 

-0.00 (0.53) 
-0.00 (0.89) 

0.00 (0.00) 
0.02 (0.00) 
0.00 (0.00) 
0.00 (0.00) 

0.25 (0.01) 
1.12 (0.05) 
1.01 (0.17) 
1.34 (0.14) 

2.04 (0.24) 
1.80 (0.96) 
2.33 (0.24) 
2.63 (0.25) 

1.29 (0.32) 
3.08 (0.66) 
3.48 (0.45) 
4.20 (0.34) 

0.00 (0.00) 
0.09 (0.04) 
0.31 (0.17) 
0.48 (0.26) 

0.18 (0.01) 
0.84 (0.06) 
0.85 (0.12) 
1.17 (0.21) 

1.44 (0.17) 
1.31 (0.64) 
1.72 (0.19) 
1.99 (0.24) 

0.91 (0.23) 
2.22 (0.46) 
2.52 (0.30) 
3.10 (0.24) 

"Cf. eq 3; mean value (in degrees, averaged over FCP), standard de­
viation in parentheses. 'Average rms deviation between observed and 
recalculated (by eq 10) endocyclic torsion angles (in degrees); standard 
deviation in parentheses. 

larger rms deviations noted for thiane and oxathiane rings relate 
directly to the neglect of the *, term in eq 10 in particular, the 
amplitude of which ($,) being on average larger in sulfur-con­
taining rings than in the remainder (vide supra). 

For purpose of a more systematic analysis, sets of six-membered 
ring conformations were generated by molecular mechanics 
calculations. The construction of cyclohexane, tetrahydropyran, 
thiane, and 4-oxathiane rings with particular CP-puckering pa­
rameters (denoted gcp, 9CP, a n d ^cp) w a s facilitated26 by the 
restricted motion option in the well-known MM2 program.34 

Thus, sets of chair-like, envelope-like, and (twist-)boat-like rings 
with CP phase angles (FCP) varying from 0° to 350° in 10° steps 
were obtained. Mean values of * 0 and *i as well as the rms 
deviation between observed torsion angles and those recalculated 
by eq 10 for these sets of ring conformations are collected in Table 
II. 

Analysis of the ring puckering parameters shows that * 0 os­
cillates around 0° as a function of Fc?. Hence, averaging $0

 oveT 

the total pseudorotation circuit (FCp = 0-350°) causes the mean 
value to collapse to zero, the standard deviation being a measure 
of the amplitude of the oscillation. For all boat/twist-boat 
pseudorotation circuits (9C P = 90°), * 0 reaches its extremes at 
the twist-boat conformations; for boat conformations $ 0 is 0° (or 
very close to 0°). For cyclohexane this is also true for all other 
pseudorotation circuits characterized by 0C P ^ 90°; however, 
heterocyclic rings do not display such a straightforward inter-
pretable behavior at 9C P ^ 90°. Table II shows that for all 
molecules the standard deviation of the mean value of <t0 attains 
its maximum value at 0C P = 90° and correlates positively with 
gcp- Moreover, * 0 appears to be rather insensitive to nonequi-
laterality of the ring: the maximum attained value in cyclohexane 
(at Qc? = 0.75 A, 6C P = 90°) equals ±0.77°, whereas that in 
4-oxathiane (at Qc? = 0.9 A, 9C P = 90°) equals ±1.42°. All in 
all, it may be concluded that the * 0 term in eq 3 plays indeed only 
a minor role. Notably, within a particular pseudorotation circuit 
(9C P = constant), 4>( appears to be much less dependent on the 
type of conformation (cf. Table H). Instead, nonequilaterality 
appears to be the dominant factor with ^1 being larger in the 
boat/twist-boat itinerary than in the more chair-like conforma­
tions. 

The cumulative effect of the neglect of these two parameters 
is reflected in the mean rms deviation between the torsions ob-

(34) Allinger, N. L.; Yuh, Y. H. QCPE 1980, 12, 395. 

Half-Chair 

Twist-boat 
Envelope 

Chair, Boat 

0.6 
Pople) 

Figure 1. Rms deviations between "observed* (i.e., generated by MM2) 
and recalculated (by eq 10) endocyclic torsion angles determined for five 
canonical six-membered ring conformations as a function of Qcf (in A). 

served in the rings generated by MM2 and the corresponding 
torsions subsequently recalculated by eq 10. As can be gleaned 
from the last column in Table II, overall (i.e., mean) deviations 
from eq 10 increase going from chair-like to (twist-)boat-like 
conformations. Moreover, the MM2-generated six-membered ring 
dataset indicates that eq 10 is nearly exact for equilateral rings, 
but there is a clear trend in the mean rms deviations as the latter 
become larger in case the ring is "more nonequilateral". These 
findings were elaborated for the equilateral ring formed by cy­
clohexane. For five classical conformations, i.e., the chair, en­
velope, half-chair, boat, and twist-boat, the rms deviations between 
"observed" (i.e., generated by MM2) and recalculated (by eq 10) 
endocyclic torsion angles were determined as a function of the 
total puckering amplitude QCP. The results are given in Figure 
1, and it is seen that the error introduced by the neglect of the 
first two terms of the Fourier series depends on the conformation 
(i.e., FCf and 0CP): for chairs and boats eq 10 is virtually exact; 
for the remaining conformations the error in general becomes 
larger as Qc? increases, i.e., as the ring becomes more puckered. 
As the total puckering amplitude, Qrp, of cyclohexane-type rings 
commonly occurs in the 0.50-0.80 A interval, it is inferred that 
the intrinsic error of eq 10 when applied to this type of rings is 
0.0-0.8°. 

Having established that eq 10 reproduces the endocyclic torsion 
angles in six-membered rings to a satisfactory degree, a closer 
look at this equation is in order. The first term in eq 10 corre­
sponds to the description given by Buys and Geise9 for the 
boat/twist-boat itinerary of six-membered rings, whereas the 
second term delineates the torsion angle dependence in the un-
distorted chair as defined by Bucourt.35 Hence, eq 10 effectively 
describes the conformation of a given six-membered ring as a linear 
combination of these basis forms (vide infra). At this point it is 
noted in passing that there are some exceptional ring systems that 
cannot be described in terms of the formalism denoted by eq 10. 
It turns out that some (but not all!) six-membered rings that are 
part of a polycyclic compound display rather large (up to 15°) 
*o and/or *i terms in eq 3. This situation occurs especially in 
cases where the six-membered ring under consideration is, in fact, 
a bicyclo[3.1.0]hexanoid ring. Of course, one can debate whether, 
for example, an epoxide of a five-membered ring compound should 
indeed be treated as a six-membered ring; the fact is, that for this 
type of molecule, eq 10 may break down. 

Analogous to the CP formalism, the puckering parameters (*2, 
P2, *3) in eq 10 may be replaced by a spherical polar set (Q, 9, 
P2), where Q is the total puckering amplitude 

Q = \[*i 

and 

9 = arctan (*2/*3) 

(10 

(12) 
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Figure 2. Polar projection of the sphere depicting conformational space accessible to six-membered rings. Hexagons denote the canonical conformations 
(see text); symbols on the sides of the hexagons indicate the signs of the endocyclic torsion angles. 

with 0 < 9 < ir. 
For a given amplitude Q, this transformation enables one to 

map out the conformations accessible to six-membered rings on 
the surface of a sphere. The poles, at 0 = 0° or 180°, correspond 
to the canonical chair conformations. The equator (0 = 90°) 
represents the pseudorotational pathway for the flexible boat/ 
twist-boat interconversions; specific forms are characterized by 
the phase angle P2: the six boat conformations occur at P2 = 30°, 
90°, 150°, 210°, 270°, 330°, whereas the six twist-boat confor­
mations occur at P2 = O0, 60°, 120°, 180°, 240°, 300° (note that 
these positions are shifted by 30° with respect to the corresponding 
CP phase angle). Other commonly described conformations are 
located at specific points on the northern or southern hemisphere. 
Following the terminology proposed by Boeyens,21 half-chairs are 
characterized by tan 0 = ± 1 , P1 = n-60" {n = 0-5); envelopes 
(or sofas) by tan 0 = ± 2 / V 3 , P2 = 30° + n-60" (n = 0-5); and 
screw-boat (or 1,3-diplanar forms) by tan 0 = ±2, P1 = n-60" 
(n = 0-5). For an overview, the surface of the sphere is depicted 
in Figure 2 in a two-dimensional polar projection. In this figure 
the hexagons represent the canonical conformations boat (B), 
twist-boat (T), chair (C), half-chair (H), envelope (E), and 
screw-boat (S). The hexagons also carry the notation introduced 
by Bucourt35 to indicate the signs of the endocyclic torsion angles 
in the depicted conformations. 

The above given description of conformational space accessible 
to six-membered rings in three coordinates (Q, 0, P2) is convenient 
and pictorial. However, it is noted that, as19,24 in the analogous 
CP description, in a real molecule (e.g., cyclohexane) each con­
formation adopts its own particular value of Q. This means that 
conformational space for such a given molecule is not a sphere24 

but rather resembles a flattened pumpkin. 

Discussion 
The Cremer-Pople formalism enjoys a great popularity and 

has indeed become the de facto standard for describing six-

(35) Bucourt, R. The torsion angle concept in conformational analysis. 
Topics in Stereochemistry; Eliel, E. L., Allinger, N. L., Eds.; Interscience: 
New York, 1974; Vol. 8, p 159. 

membered ring conformations.21,22,36 Nevertheless, in the past 
several empirically derived methods to calculate puckering co­
ordinates for six-membered rings from endocyclic torsion angles 
have been proposed and tested by various authors.9,17,23 However, 
the latter relationships described only part of the conformational 
space available to the ring9 or used rather complicated formu­
las.17,23 Diez et al.37,38 worked out a relationship between endo­
cyclic torsion angles and the CP ring puckering coordinates as­
suming infinitesimal displacements from a planar reference 
conformation. They showed that under these conditions the CP 
equation can be transformed into a generalized torsion angle 
expression closely related to the Fourier series model (eq 3) of 
Cano et al.29 In fact, for six-membered rings an expression 
equivalent to eq 10 was suggested, but a serious test of the ap­
plication of this expression to the experimental and/or theoretical 
torsion angles of six-membered rings was not published. 

Obviously, the truncated Fourier (TF) description given by eq 
10 and the corresponding CP formalism are to some extent in­
terrelated. Scrutiny of the TF and CP data obtained for the 
six-membered rings generated by MM2 (vide supra) shows that 
for the equilateral cyclohexane ring the relation 

FCP -P2- 30° (13) 

holds for all conformations (QCP. ©CP) within 0.2° (worst case). 
The relationships between the CP-puckering coordinates q2, qit 

and, by implication, gCp a n d 0CP> o n t n ^ one hand, and the 
corresponding TF-puckering coordinates *2> *3> 6. and 0, on the 
other hand, are less straightforward. This is exemplified by Figure 
3 in which for five canonical conformations Q is plotted as a 
function of gCP. It is found that for a particular conformation 

(36) French, A. D.; Brady, J. W. Computer Modeling of Carbohydrate 
Molecules, French, A. D.; Brady, J. W., Eds.; ACS Symposium Series; Am­
erican Chemical Society: Washington, DC, 1990; Chapter 1, p 1. 

(37) Diez, E.; Esteban, A. L.; Guilleme, J.; Bermejo, F. L. J. MoI. Struct. 
1981, 70, 61. 

(38) Diez, E.; Esteban, A. L.; Bermejo, F.; Altona, C; Leeuw, F. A. A. 
M. de J. MoI. Struct. 1984, 125, 49. 
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Figure 3. Functional dependence between the total puckering amplitudes 
defined by the TF formalism (Q, in degrees) and the CP formalism (gCp> 
in A), respectively, as determined for five canonical cyclohexane con­
formations generated by MM2. 
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Figure 4. Plots of TF phase angles of pseudorotation (P2) versus its CP 
counterparts (Fcf) for two MM2-generated pseudorotation circuits of 
4-oxathiane (circles: QCp = 0-67 A, 6C P = 5.2°; diamonds: gCp = 0.90 
A, GCp = 90°). Solid line indicates the Pi/Fcf relation delineated by eq 
13. 

the functional dependence between Q and gC P is best described 
by a third degree polynomial expression; however, it is noted that 
the polynomial expressions differ for the different types of con­
formations. Such behavior is also noted for the remaining 
puckering coordinates. In other words, the TF-puckering am­
plitudes, $„, are not just a function of the corresponding CP-
puckering amplitudes, q„, but instead a function of all CP-
puckering coordinates (FCP, q2, and ^3). It follows that the simple 
relationships between torsion angles and displacement of a regular 
hexagon from planarity, as suggested by Dunitz," do not hold 
for finite puckered six-membered rings. 

In the case of nonequilateral rings, the interrelation between 
the TF and CP description is even more difficult to read. Here 
the problem concentrates on the relationship between the phase 
angles of pseudorotation P2 and FCP, respectively. To illustrate 
this point, plots of P2 versus FC P are displayed in Figure 4 for two 
pseudorotation circuits calculated by means of MM2 for 4-ox­
athiane: one at 0Cp = 5.2°, gC P = 0.67 A, and the other one at 
9C P = 90°, gcp = 0-90 A. It is seen that in the latter boat/ 
twist-boat pseudorotation itinerary the relation between P2 and 

Figure 5. Endocyclic torsion angles (a) and interplanar angles (b) ob­
served39 in the 4-oxathiane ring of 4-oxathianum bis(carbomethoxy)-
methylide. 

FC P sticks to eq 13 reasonably well (maximum deviation ±2°). 
However, in the chair-like conformations (0CP = 5.2°, QCP = 0.67 
A), the simple linear functional dependence as delineated by eq 
13 is completely lost and replaced by a periodic function, amplitude 
22°. 

These findings imply that the conformational spaces spanned 
by the TF and the CP formalism, respectively, differ in a rather 
subtle way. From the validity of eq 13 it is inferred that for 
equilateral as well as nonequilateral rings the boat/twist-boat 
pseudorotational subspaces defined by the two formalisms are by 
and large the same. By the same token it is concluded that for 
equilateral six-membered rings the inversional subspaces (i.e., chair 
forms) defined by the two formalisms are identical. However, 
for nonequilateral rings this is no longer true; in this case the 
undistorted chair defined by the TF formalism may differ sub­
stantially from the undistorted chair delineated by the CP for­
malism. This is easily recognized when it is realized that the TF 
formalism defines the undistorted chair in terms of its endocyclic 
torsion angles: all torsions adopt the same absolute value; only 
the signs of the torsions alternate along the ring. The CP for­
malism defines the undistorted ring in terms of equal but alter­
nately signed z-displacements of the ring atoms from the CP mean 
plane. Only for six-membered rings with true D3d symmetry, like 
the cyclohexane chair, do the two definitions yield identical 
conformations; however, in nonequilateral rings this identity is 
lost. 

The 4-oxathiane ring observed in the X-ray structure of 4-
oxathianum bis(carbomethoxy)methylide39 (Figure 5) is a good 
example of the latter feature. The CP-puckering coordinates for 
this ring are calculated as q2 = 0.002 A, FCP = 180°, q3 = 0.648 
A; hence for all practical purposes the ring is an undistorted chair 
in terms of the CP formalism. Figure 5a shows that the endocyclic 
torsion angles along the ring vary substantially in absolute value. 
The TF-puckering coordinates calculated for this 4-oxathiane ring 
amount to * 2 = 11.2°, P2 = 210°, and * 3 = 61.4°. The inter­
pretation of the latter puckering coordinates (i.e., the ring con­
formation is a linear combination of the S C 0 and B 5 0 forms) is 
in accordance with the internal puckering phenomena locally 
observed within the 4-oxathiane ring; the C-S-C part is obviously 
less puckered than the C-O-C part of the molecule (cf. Figure 
5b). In other words, the ring is definitely not an undistorted chair 
as defined by the TF formalism, thereby demonstrating that the 
definitions of the undistorted chair differ in the case of none­
quilateral rings. Which one of the two definitions of an undistorted 
chair is the "correct" one is a matter of preference. However, it 
is noted that in this way the CP definition may be at odds with 
other criteria35 commonly accepted in stereochemistry (see also 
below). 

An even more extreme illustration of the difference between 
the TF and the CP formalism is the thiane ring observed in the 
X-ray structure of //•0/w-2-methylthiane-l-(p-tosyl)imide.40 

Figure 6 summarizes the CP and TF interpretation, respectively, 
of the thiane ring conformation. As can be gleaned from the 
figure, the CP formalism describes the thiane ring as a linear 

(39) Abbady, M. A.; Askari, S.; Morgan, M.; Ternay Junior, A. L.; Galloy, 
J.; Watson, W. H. J. Heterocycl. Chem. 1982, 19, 1473. 

(40) Jalsovszky, I.; Kucsman, A.; Ruff, F.; Koritsanszky, T.; Argay, G.; 
Kalman, A. J. MoI. Struct. 1987, 156, 165. 
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Figure 6. Interplanar angles (a, /S) in the thiane ring observed40 for 
/ra«s-2-methylthiane-l-(p-tosyl)imide, indicating the flattening of the 
ring at the C-S-C apex. Lower part shows the basis forms that are part 
of the linear combinations prescribed by the CP (left) and TF (right) 
formalisms, respectively. 

combination of the S'4B and the SC4 form, whereas the TF for­
malism takes it to be a combination of BS4 and SC4 forms. Again, 
based on the internal angular characteristics of the ring (the 
C-S-C apex less puckered than the C-C4-C apex), one is inclined 
to prefer the TF interpretation. However, it should be stressed 
that from a mathematical point of view the CP interpretation is 

correct. The discrepancies noted above stem from the difference 
in reference systems used by the two methods: the CP formalism 
employs an external reference plane, whereas the TF formalism 
is based on internal coordinates only. The examples given above 
just demonstrate the hazards inherent in using externally refer­
enced puckering coordinates to interpret the internal angular 
characteristics of a six-membered ring. 

Conclusion 
The TF formalism delineated by eq 10 gives a description of 

six-membered ring conformations in terms of three ring puckering 
coordinates derived from the endocyclic torsion angles. As such, 
it relies solely on internal coordinates and is therefore not in need 
of an external reference plane, e.g., the mean plane in the CP 
formalism. This is an important feature since the determination 
of a reference plane requires the Cartesian coordinates of all ring 
atoms to be known which consequently makes it virtually im­
possible to apply the CP formalism to molecules in solution. 
Conversely, the TF formalism is in a sense geared to dealing with 
six-membered rings in solution as it utilizes torsion angle mag­
nitudes which may be derived from NMR coupling constants. 
Especially with respect to the latter type of work, it is noted that 
the linear equation system given by eq 10 can still be solved for 
the three ring puckering coordinates if only three torsions are 
known. Admittedly, the TF formalism lacks the CP formalism's 
exactness, but its accuracy seems satisfactory for all practical 
purposes. More important, especially in nonequilateral rings, the 
TF method appears to be consistent with internal angular char­
acteristics of rings such as local flattening, etc. It is for these 
reasons that the TF formalism may well serve existing stereo­
chemical needs. 
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Abstract: Rate constants for gas-phase electron-transfer reactions between substituted nitrobenzenes have been measured 
using ion cyclotron resonance spectroscopy. On the basis of the assumption that these reactions occur through the formation 
of an intermediate complex, a statistical model is used to interpret the reaction kinetics. The intersecting parabolas quantum 
mechanical model provides an alternative description of the energy surface. Energy barriers are found to be consistent for 
the two methods. The results for exothermic reactions are consistent with a Marcus theory analysis, but suggest that a zero-order 
potential energy surface may not be completely adequate for quantitative prediction of reaction rates. 

Introduction 
Electron-transfer reactions have long been studied in both 

solution and gas phases. In solution, they generally have an 
activation barrier that can be ascribed to structural deformation 
of the reactants (the inner-sphere reorganization energy) and the 
reorientation of solvent dipoles (the outer-sphere reorganization 
energy) upon the formation of the transition state. Early gas-phase 
studies mostly concentrated on reactions between rare gas cations 
or diatomic cations and small molecules (2-3 atoms) that had no 
analogous reactions in solution. Recently, systematic studies on 

gas-phase electron-transfer reactions of metallocenes1 and nitro­
benzenes2 which had been studied in solution phase have appeared. 

Kinetics of gas-phase electron-transfer reactions are governed 
by, among other things, energy defects and Franck-Condon factors 
of the reacting pair.3 At thermal energies the energy resonance 

(1) (a) Richardson, D. E. J. Phys. Chem. 1986, 90, 3697. (b) Eyler, J. 
R.; Richardson, D. E. J. Am. Chem. Soc. 1985,107, 6130. (c) Phelps, D. K.; 
Gord, James, R.; Freiser, B. S.; Weaver, M. J. / . Phys. Chem. 1991, 95,4338. 

(2) Grimsrud, E. P.; Caldwell, G.; Chowdhury, S.; Kebarle, P. J. Am. 
Chem. Soc. 1985, 107, 4627. 
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